Compute the Shannon, Rényi, Havrda and Charvat, and Arimoto entropies of the exponentiated Weibull distribution.
se_ew(a, beta, zeta)
re_ew(a, beta, zeta, delta)
hce_ew(a, beta, zeta, delta)
ae_ew(a, beta, zeta, delta)
The functions se_ew, re_ew, hce_ew, and ae_ew provide the Shannon entropy, Rényi entropy, Havrda and Charvat entropy, and Arimoto entropy, respectively, depending on the selected parametric values of the exponentiated Weibull distribution and
The strictly positive shape parameter of the exponentiated Weibull distribution (
The strictly positive scale parameter of the baseline Weibull distribution (
The strictly positive shape parameter of the baseline Weibull distribution (
The strictly positive parameter (
Muhammad Imran, Christophe Chesneau and Farrukh Jamal
R implementation and documentation: Muhammad Imran <imranshakoor84@yahoo.com>, Christophe Chesneau <christophe.chesneau@unicaen.fr> and Farrukh Jamal farrukh.jamal@iub.edu.pk.
The following is the probability density function of the exponentiated Weibull distribution:
Nadarajah, S., Cordeiro, G. M., & Ortega, E. M. (2013). The exponentiated Weibull distribution: a survey. Statistical Papers, 54, 839-877.
re_exp, re_wei, re_ew
se_ew(0.8, 0.2, 0.8)
delta <- c(1.5, 2, 3)
re_ew(1.2, 1.2, 1.4, delta)
hce_ew(1.2, 1.2, 1.4, delta)
ae_ew(1.2, 1.2, 1.4, delta)
Run the code above in your browser using DataLab